Inferring combined CNV/SNP haplotypes from genotype data

نویسندگان

  • Shu-Yi Su
  • Julian E. Asher
  • Marjo-Riitta Järvelin
  • Philippe Froguel
  • Alexandra I. F. Blakemore
  • David J. Balding
  • Lachlan James M. Coin
چکیده

MOTIVATION Copy number variations (CNVs) are increasingly recognized as an substantial source of individual genetic variation, and hence there is a growing interest in investigating the evolutionary history of CNVs as well as their impact on complex disease susceptibility. CNV/SNP haplotypes are critical for this research, but although many methods have been proposed for inferring integer copy number, few have been designed for inferring CNV haplotypic phase and none of these are applicable at genome-wide scale. Here, we present a method for inferring missing CNV genotypes, predicting CNV allelic configuration and for inferring CNV haplotypic phase from SNP/CNV genotype data. Our method, implemented in the software polyHap v2.0, is based on a hidden Markov model, which models the joint haplotype structure between CNVs and SNPs. Thus, haplotypic phase of CNVs and SNPs are inferred simultaneously. A sampling algorithm is employed to obtain a measure of confidence/credibility of each estimate. RESULTS We generated diploid phase-known CNV-SNP genotype datasets by pairing male X chromosome CNV-SNP haplotypes. We show that polyHap provides accurate estimates of missing CNV genotypes, allelic configuration and CNV haplotypic phase on these datasets. We applied our method to a non-simulated dataset-a region on Chromosome 2 encompassing a short deletion. The results confirm that polyHap's accuracy extends to real-life datasets. AVAILABILITY Our method is implemented in version 2.0 of the polyHap software package and can be downloaded from http://www.imperial.ac.uk/medicine/people/l.coin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sequential Monte Carlo framework for haplotype inference in CNV/SNP genotype data

Copy number variations (CNVs) are abundant in the human genome. They have been associated with complex traits in genome-wide association studies (GWAS) and expected to continue playing an important role in identifying the etiology of disease phenotypes. As a result of current high throughput whole-genome single-nucleotide polymorphism (SNP) arrays, we currently have datasets that simultaneously...

متن کامل

Inferring Haplotypes of Copy Number Variations From High-Throughput Data With Uncertainty

Accurate information on haplotypes and diplotypes (haplotype pairs) is required for population-genetic analyses; however, microarrays do not provide data on a haplotype or diplotype at a copy number variation (CNV) locus; they only provide data on the total number of copies over a diplotype or an unphased sequence genotype (e.g., AAB, unlike AB of single nucleotide polymorphism). Moreover, such...

متن کامل

MOCSphaser: a haplotype inference tool from a mixture of copy number variation and single nucleotide polymorphism data

UNLABELLED Detailed analyses of the population-genetic nature of copy number variations (CNVs) and the linkage disequilibrium between CNV and single nucleotide polymorphism (SNP) loci from high-throughput experimental data require a computational tool to accurately infer alleles of CNVs and haplotypes composed of both CNV alleles and SNP alleles. Here we developed a new tool to infer population...

متن کامل

MLR-tagging: informative SNP selection for unphased genotypes based on multiple linear regression

UNLABELLED The search for the association between complex diseases and single nucleotide polymorphisms (SNPs) or haplotypes has recently received great attention. For these studies, it is essential to use a small subset of informative SNPs accurately representing the rest of the SNPs. Informative SNP selection can achieve (1) considerable budget savings by genotyping only a limited number of SN...

متن کامل

A method for calling copy number polymorphism using haplotypes

Single nucleotide polymorphism (SNP) and copy number variation (CNV) are both widespread characteristic of the human genome, but are often called separately on common genotyping platforms. To capture integrated SNP and CNV information, methods have been developed for calling allelic specific copy numbers or so called copy number polymorphism (CNP), using limited inter-marker correlation. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 26 11  شماره 

صفحات  -

تاریخ انتشار 2010